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AIIItract-Some basic steady fonning processes, in particular drawing and extrusion, of composite
(multilayered) metal sheets, wires and tubes are analyzed within the framework of continuum
plasticity. Material behaviour is modelled as rigid/pcrfectly-plastic and a radial flow pattern is
assumed within the working zone. Simplified versions of the respective Nadai-Hill and Shield radial
flow solutions arc used for the description of the stress field and velocity profile in each phase
(layer). The matching requirements along the interfaces between the different layers, topther with
the friction conditions at the walls and the entry/exit load specification, lead to a system ofalgebraic
equations that admit a simple solution. The main outcome are elegant fonnulae for the drawing
tension, and extrusion pressure, valid for any number of layers. The applicability of the results is
restricted to dies ofsufficiently small angles, tapcr and wall friction. Comparison with expcrimental
results for the drawing stress of bimetallic composites shows a nice agreement, within that range
of validity.

I. INTRODUCTION

This paper presents a theoretical study of some basic steady forming processes of multi
layered composites. We investigate in particular the drawing and extrusion, or any combi
nation of both, of composite sheets, wires and tubes, through wedge-shaped and conical
dies. An early attempt to analyze such problems has been made in [1], via the force
equilibrium approach. Some experimental data for the required drawing tension of bi
metallic tubes has been given recently in [2], together with a comparative study of a few
available numerical methods of analysis.

Here we consider these metal forming processes as a problem in continuum plasticity.
The theoretical model employed in this study is based on the following assumptions: (a) The
material is rigid/perfectly-plastic according to the von-Mises flow rule; (b) The die is
sufficiently long and tapered so that a radial flow pattern can be assumed within the working
zone; (c) Deviations from the uniform flow pattern, induced by wall friction and interfacial
shear, are small. It is noted that equivalent models have been successfully employed in [3-6J
for investigating similar steady forming processes of (single phase) rigid/hardening materi
als.

The analysis centers on the use of consistent approximations derived from the
Nadai-HilJ[7, 8] and Shield[9] radial flow solutions, for rigid/perfectly-plastic solids, under
plane-strain and axially-symmetric conditions, respectively. A key notion in deriving these
approximate solutions is that of the non-uniformity, of the flow field, induced by the
presence of friction and shear. We show, following [5,6], how suitable measures of that
non-uniformity can be interpreted directly in terms of physical and kinematical quantities
associated with the flow field.

The simplified versions of the exact radial flow solutions, which are valid for small
deviations from uniformity, are used for simulating the stress field and velocity profile in
each phase of the multilayered composite. The unknown integration constants are then
determined from the matching (stress continuity) conditions along the interfaces between
the different layers, the entry/exit load specification, and the friction conditions along the
walls. The latter are imposed in two alternative fashions: either through the friction factors
or through the average Coulomb friction coefficients.

The present investigation results in simple and compact expressions for the stress field
in each layer. Useful formulae are thus obtained for the drawing tension, and extrusion
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pressure, as a function ofdie geometry, composite properties and wall friction. These results
are valid for any number of layers in both plane-strain and axially-symmetric fonning
condition.

We begin in the next section with the derivation of the approximate version of the
Nadai-Hill solution for plane-strain radial flow. Next, in Section 3, we analyze in detail the
fonning processes of composite sheets. A further discussion and comparison with experi
mental results for the drawing of bimetallic composites is presented in Section 4. The
agreement with the theoretical predictions is quite good within the range of applicability of
our analysis. Then, in Section 5, we turn to the corresponding axially-symmetric problem
and derive the approximate version of Shield's three dimensional radial flow solution. That
approximation is applied in Section 6 for the analysis ofdrawing and extrusion ofcomposite
tubes and wires. The presentation in Sections 5 and 6 is less elaborated than the analogous
discussion of plane strain problems (in Sections 2 and 3), as we take advantage of the
similarity between the two cases to shorten the analysis for axially-symmetric problems.
Finally, in Section 7, we point out the common structure of the basic fonnulae for the
driving stresses in the plane-strain and axially-symmetric fonning processes.

2. THE NADAl-HILL SOLUTION

Consider plane-strain radial flow of a rigid/perfectly plastic material, where all stream
lines are directed towards the same virtual apex O. Locating the origin of a plane polar
system (r, 0) at 0 we have, by virtue of material incompressibility, that the radial velocity
should be of the fonn

(I)

wheref(O) is a function of 0, and p is a suitably nondimensionalized radial coordinate. The
components of the Eulerian strain rate tensor are therefore

f(O) 1'(0)
D = -Do=- D~= ---,, p2' ro 2p. (2)

where the prime denotes differentiation with respect to O.
The constitutive relations for a rigid/perfectly-plastic material, obeying the von-Mises

flow rule, can be written as

(

(1, - (16)2 2 I y2 2f,o 1'(0)
-2- +f re =-3 ' --= --

(1, - (16 2f(0)
(3)

where «(1" (16' fre) are the usual polar stress components, and Y denotes the uniaxial yield
stress of the material. It is convenient to introduce here a new variable'" so that

and, by the second of (3),

1'(0)
--= -tan 2"'.
2f(O)

(4)

(5)

(6)

Turning to the equilibrium requirements we find that the equilibrium equations are
completely satisfied [7, 8] if

o= 00 - '" +~ arctan [ J~ ~ ~ tan'"1 c > I

where 00, c are integration constants.
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The normal stresses can now be written in the rorrh[1, 8]

2Y 2Y[I I ]
(1, = - J3 c In p + J3 A + 2 cos 2'" - 2 c In (c - cos 2"') (7)

2Y 2Y [_ I I ]
(18= - J3c Inp + J3 A -2cos 2'" -2cIn(c -cos2"') (8)

where A is another integration constant. The shear stress is expressed by the second of (4)
and the velocity profile follows from (5), with the aid of (6), as[8]

o
f= c -cos 2'" (9)

where 0 is a constant.
We focus now attention on a restricted version of this general solution where the

non-uniformity of the flow field is relatively small. To this end we note that in uniform
(frictionless) flow or" =0 and '" =O. A reasonable measure of the deviation from that
uniform flow pattern will therefore be the local friction factor defined by

m = J3lor,,1 O:!!:.m:!!:.1Y , ~ ~. (10)

(11)

It follows, from the second of (4), that m =Isin 2'" lor, for small values of the friction
factor, m ~ 21"'1. This suggests that when the non-uniformity, induced by wall friction and
interfacial shear, remains small (m ~ 1) we may regard 1"'1 as very small and use
approximations of the type sin 2'" ~ 2"', cos 2'" ~ I, etc. Relation (6) is then replaced by
'" ~ (c - 1)(0 - ( 0) and the simplified version of the stress field is readily found as

f (1, = Y + A - B In p

where

J3
-(18= A - B Inp
2

J3-1:,,=(B - Y)8-K
2

(12)

(13)

A = Y['4 -~-~c1n(C-I)l B= Yc, K= Y(c-I)Oo. (14)

Similarly, the velocity profile (9) becomes, to the first order, a constant

o
f= U where U=--.

c-l
(IS)

In passing we note a different interpretation for the amount of deviation from
uniformity, based on Truesdell's measure of vorticity[10], defined by

M =(IW .. WI)I/2
D.. D (16)

where D is the Eulerian strain rate tensor and W is the associated spin tensor. Now, for
the radial flow pattern (1) the only nonvanishing component of W is W" = -f'(8)/2p 2.
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Inserting this, together with (2), in definition (16), and observing (5), gives

M = Isin2rH (17)

(18)

In uniform flow M =0, and for nearly uniform flows we may argue, on a purely
kinematical basis, that M remains very small. This implies again, via (17), that Il/J Iis small,
thus providing a kinematical justification for approximations (II H 15). Of course, for the
particular radial flow pattern (I) we have that m = M.

3. COMPOSITE SHEETS

Figure I illustrates a steady fonning process where the dimensions of a composite
multilayered sheet are reduced by drawing (or extruding) it through a wedge-shaped die.
The composite consists of n layers (i = I, 2, ... , n) and its initial thickness H is reduced,
during the fonning process, to the final thickness h. The entry to and exit from the die
are modelled by the arcs P = Po and p = I, respectively. We assume also that the die is
sufficiently long and tapered so as to pennit the use of averaged boundary conditions at
the entry and exit. Within the working zone we assume a radial flow pattern where the
streamlines of all layers are directed towards the common apex O. Each layer is modelled
as rigid/perfectly-plastic and deviations from unifonnity, induced by wan friction and by
interfacial shear, are assumed to be small. Under these conditions we may use relations
(11 )-(13) for the description of the stress field in each layer. Thus

.J3 a Ii) = Y + A - B In p2 r I I I

.J3 as(') = A· - B In p
2 "

.J3 TO) =(B - Y)O - K2 t6 , , ,

(19)

(20)

where i = 1,2, ... , n; Yi is the yield stress of layer Hi" and a.i _ I ~ () ~ a., (note that for the
sake of consistency the a. j are taken as negative if they fall in the negative range of 0).

Similarly, the velocity profile within each layer, as obtained from (I) and (15), is simply

V: i ) = _ V, i = 1,2, ... , n.
p

(21 )

On the whole we have therefore 4n unknowns, A" Bj , Ki, Vj i = 1,2, ... ,n, that should
be dClcnnincd from an equal number of boundary conditions.

The kinematical conditions of velocity continuity may be separated from the stress

p- loyer'n'-- loyer'l'
t- -H--

loy« '"- ~.

Fig. 1. Notation for composite multilayered sheet drawing or extrusion. The s~eet enters the
working zone, at P = Po, with initial thickness H and leaves the dIe, at p ~ I. W1~ the reduced
thickness h. The reduction is defined as R ,. 1 - h/H = 1 - I/po. The composite consIsts of n layers

(i = I, 2, ... , n) and all streamlines are radially directed towards the same virtual apex O.
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Vj = VI + 1 i = 1,2, ... ,n - J.
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(22)

The solution of (22) is VI =V (i = 1,2, ... , n) where constant V is left undetennined. The
radial velocity profile remains therefore (within the present approximation) constant over
any arc p :::: constant, regardless of the number and arrangement of layers.

Continuity of nonnal stress 0"0 at the interfaces requires, via (19), that

Aj=A'+l> BI=BI+ 1 i= 1,2, ... ,n-1. (23)

It follows that all constants AI are equal and that all constants Bi are equal, namely

AI = A, Bj = B i = 1,2, ... , n (24)

where A, B are as yet unknown. Relations (24) imply that the circumferential stress (19)
is the same for all layers. Continuity of shear stress (20) along the interfaces requires that

KI + I - Ki + (YI + I - YI)O:j =0 ; = I, 2, ... , n - 1. (25)

where we have used the second of (24). By now we have been left with n + 2 unknowns:
Kj (i = 1,2, ... , n), A and B. Thus, three additional conditions are required so as to fonn
together with (25) the desired number of equations.

Two equations are supplied by the friction condition along the walls () =lXo and () =a".
These conditions however may be stated in two different ways. One possibility is to impose
the respective shear factors (mo, mn) along the walls. This leads, by (10) and (20), to the
equations

(26)

(27)

Note that along the walls the shear stress opposes the flow and should therefore be taken
as positive at () =0:", but as negative at () = lXo.

Alternatively, we can implement the friction boundary data by imposing the average
Coulomb friction coefficients CPo, ~n) through the integral conditions

JI'o tWdp =Po fO O"odp

JPo t~}dp = -~n JPo O"odp

at () = lXo

at 8 =0:"

(28)

(29)

(0"0 is expected to be negative). Inserting (19) and (20) in (28) and (29) and observing (24)
gives the equations

where

(B - Y1}fXo - KI =Po(A - JB)

(B - Yn)o:" - K,. = -p,,(A - JB)

J=polnpo_l.
Po-l

(30)

(31)

(32)
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Finally, we have the loading condition which determines the ratio between the average
drawing tension at the exit and the average extrusion pressure at the entry. We assume
that the die angle (a" - ao) is sufficiently small (which is indeed the common case in
practice) to permit replacement of horizontal drawing and extrusion stresses by the
corresponding radial stress components. Accordingly, we define the average drawing
tension stress I, and average extrusion pressure p, as

I f" I fa.t=-- (J,(p=l)d9, p=--- (J,(p=Po)dO.
a" - ~ ao IX" - CXo ao

The loading condition is now stated in the form

(I - tI)1 - (I + tI)p = 0

(33)

(34)

where the specified loading parameter 11 describes the type of the forming process. Thus
11 = 1 in pure drawing (p =0), " = -1 in pure extrusion (I = 0), and " > 1 describes
drawing with back-pull (p < 0). Inserting (J, from (18) in definitions (33), and noting (24),
we get

(35)

where YD!' is the average yield stress of the composite defined by

The loading condition (34) can now be written, with the aid of (35), in the form

1+tI
A --2-(1n po)B+ Y...,=O.

(36)

(37)

To summarize then, the governing set of equations, for the n + 2 integration constants
(Kj i = I, 2, ... ,n, A, B) consists of the n - 1 equations given by (25), the two friction
conditions (26) and (27), or (30) and (31), and the loading condition (37). The solution
of this system is readily obtained in the following way: Summing eqns (25), from i = I to
i = n - I, gives

(38)

Now, eqn (38) together with (26) and (27), or (30) and (31), and (37) are easily solved for
A, B, K

I
, K". When the friction factor is imposed along the walls, (26) and (27), we get

where

lJ = m"Y,,+mOYI

2(0:" - ao) YGI1

(39)

(40)

(41)

(42)

Relations (39) and (40) represent also the solution for the case where the Coulomb friction
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coefficient is imposed along the walls. (30) and (31). only that (41) and (42) are then
replaced by

(43)

(44)

The remaining constants K; (i =2, 3, ... , n - 1) are easily obtained from eqns (25).
Summing the first i-I equations, and arranging, gives

(45)

where Yl.2 is the average yield stress of the first i layers, viz

(46)

Note that yt.:! = Y. and yt,;J = Y.... Combining the first of (40) with (45) we find that

(47)

which completes the solution. The formula for Kj can be written in a number of different
forms but here we prefer to use (47). It may be verified that expression (47) agrees with
relations (40) when i = 1 and i =n, respectively.

The stress field within the deformation zone follows now from (18)-(20), with the aid
of (39) and (47), as

J3 (1+'7)T(I,(I) = Y;- Y... +(I +c5)Y... -2-lnpo-lnp

J3 (1 + '7 )T(l6= -Y... +(I+c5)Y -2-lnpo-lnp

ft~=[(1 + 15)8 - CXo - y]Y - (cx; - CXo)Yl.2 + (cx; - 8)Y;

and the corresponding drawing tension and extrusion pressure, (35), become

2 (I +'7) 2 (I - '7 )
1 = J3(l +15) -2- lnpo Y..., p = J3(1 + 6) -2- ln Po Y...

(48)

(49)

(50)

(51)

A helpful notion here is that of the uniform drawing tension (I.) and uniform extrusion
pressure (P.), which are the required driving stresses when the walls are smooth. In the
absence of wall friction we have that 6 = 0, and so

1+'7 1-'7
I. =. J3 Y.. ln POt P. = J3 Y.ln Po· (52)
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The driving stresses (51) can now be rewritten in the form

t=(1+b)t., p=(I+b)p. (53)

emphasizing thus the role of b as a correction factor which depends on the details of
friction data along the walls.

4. DISCUSSION OF THE PLANE·STRAIN SOLUTION

We have already seen how the effects of wall friction can be implemented either through
the friction factors or through the Coulomb friction coefficients. There are however
additional noticeable differences between the results obtained by these two approaches to
the friction conditions.

Relation (41) suggests a dependence of the correction factor fJ on material properties;
it appears that the use of soft coating layers will reduce the required driving stress.
Consider for example a symmetric composite where a hard core is coated with thin soft
layers. Put "'0 = m. =m for the shear factor, ex. - ~ = ex for the die angle, Y1 = Y. = Ytool

for the yield stress of the coating material, and identify Y"" with the core material yield
stress Ytore (this is permissible for a sufficiently thin coating material). Relation (41) is then
reduced to

fJ =(~)(YCOlIt)
ex Yeore

(54)

predicting a relatively small b for law values of YCOItl Ycore' This behaviour was observed
in experiments reported in [11].

By contrast, relation (43) is independent of material properties, but does depend quite
strongly on the reduction and loading parameter. In pure drawing, with" = 1, we have

q(~)
b =__-;:p-,o_--:-,1c---;-

(
In po)I+q 1---

Po- I

with q =J.l.+ ~
ex. - CXo

(55)

while in pure extrusion, where" = - I,

(56)

q(po In po)
Po-I

b= I_q (po In Po _ I)' .
Po-I

Relations (55) and (56) are displayed in Fig. 2 over the practical range of parameter q and
the effective homogeneous strain £0 given by

(57)
2

(0 = j3ln Po·

It is seen from Fig. 2 that the correction factor in pure extrusion is higher than that in
pure drawing. This implies, via (53), that for the same friction coefficients and die geometry
the required extrusion pressure is higher than the corresponding drawing tension. That
result is not altogether unexpected as the extrusion pressure causes lateral expansion of
the sheet, thus increasing the pressure on the walls which in tum increases the resisting
shear stresses. By contrast, the lateral contraction caused by the drawing tension has an
opposite effect on the shear stresses along the walls. For small q and £0 we can replace (43)
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Fig. 2. Variation oflhe correction factor 6 with the effective homogeneous strain to - (2/.j3) In Po,
for different values of parameter q =(P. +1Atl)/(<<" - «0), in pure drawing and pure extrusion.

Calculations are based on Coulomb's friction conditions.

by the approximation

(58)

revealing, to this degree of accuracy, a linear dependence on 'lEo.
It is difficult to tell which of the two alternative friction conditions, imposed along the

walls, is closer to reality. There is a definite possibility that the actual friction data,
associated with large plastic deformations, is some combination of the alternatives
considered here. That idea will not be explored any further in this paper, and we shall just
point out that for sufficiently small values of q and Eo relations (43) and (44) become
identical with (41K42), when mj is linearly related to J-li' viz

1 y. ( J3 )-m·-' =J-l. J--'lEo ;-0 n2 I Y"" I 4 ' . (59)

Ofcourse, the accuracy of our model becomes questionable when (, increases. The local
shear factor (10), which according to our basic assumption should remain much smaller
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than unity, follows from (50) as
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m (,) = 21 [(1 + <5)8 - :xo - )'1; - «x, - 110) ~~ + «x, - e) I

(X, _ I ~ e~ (x" i = I, 2, ... , n.

(60)

The linear dependence of m(i) on ewithin each layer implies that the highest values of the
friction factor are attained at the interfaces. A typical interface value m, is obtained from
(60), with (J = (x" as

I
Y",,- Y~ Yot"

m, = 2 «x, -CXo) Y, + (a,~ - Y)-y;- j = I, 2, ... , n - I. (61 )

For small die angles we may expect m, to remain within the range of validity of our
analysis, provided that <5 is not too high. The presence of soft layers with yield stresses
which are considerably below Y/lII will obviously increase the values of mi' A more accurate
analysis, based on the complete solution (6) is then required.

There are additional limits on the validity of the present model which will be mentioned
briefly. In the first place it is required that the die will have a sufficiently small taper to
justify the radial flow assumption. This requirement, when expressed in geometrical terms,
implies that the die angle (an -110) should be some fraction of the reduction R = I - I/po.
Secondly, the drawing tension cannot exceed the average yield stress YGlJ' For pure drawing,
we can put this condition in the form (see also Fig. 2)

(1 + <5)£0 ~ 1. (62)

It is also possible that the nature of the bond at the interfaces places a restriction on the
stress field. Suppose for example that the allowable shear stress at each interface is to(i).

There are then (n - I) constraints, obtained from (50),

that should be observed.
We turn now to a comparison of theoretical predictions obtained here with the

experimental results reported in [2] for pure drawing of bimetallic composites.
The experiments were carried on tubes drawn through conical dies over stationary

cylindrical plugs. The stress field in that flow pattern is close to plane-strain conditions
with 110 = O. (The axially-symmetric radial flow solution, discussed in the next sections, is
not valid for tubes with 110 =0.) The composites were made from various combinations of
mild steel (MS), 70/30 brass (8r), and pure copper (Cu). The uniaxial stress-strain
characteristics of these materials are represented by the power-hardening relation

(64)

with the particular specifications: Yo =451.4 MPa, ~ = 66.7, n =0.151 for mild steel;
Yo = 260.9 MPa, ~ = 38.5, n =0.235 for 70/30 brass; and Yo = 242.6 MPa, ~ = 45.5,
n = 0.096 for pure copper.

The hardening characteristics represented by (64) deviate, as shown in Fig. 3, from the
perfectly-plastic behaviour assumed by our model. We define therefore an average yield
stress by

1 i'Y=Y(£)=- ud£
£ 0

(65)
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0.1

Fig. 3. Uniaxial stress-strain characteristics of three strain-hardening materials. Mild steel (MS):
Yo:= 451.4 MPa, , .. 66.7, n := 0.151. 70/30 brass (Br): Yo:= 260.9 MPa, , .. 38.5, n .. 0.235. Pure
copper (Cu): Yo" 242.6 MPa, ,:= 45.S, n" 0.096. Also shown are the integral average yield

stresses Y - Y«).

and use this definition as a reasonable equivalent description (see Fig. 3) of material (64),
suitable for the present analysis.

The composite specimens were bimetallic each, with the following ordering of layers:
MS/Cu, CuIMS, MS/Br and BrIMS (the notation reads outer layer/inner layer). The
corresponding geometrical relations were «0 == 0, lX, == 0.059 rad (also lXl == 0.046 rad for the
Cu/MS tubes), and lX2 == 0.131 rad. The effective homogeneous strain was varied over a
fairly wide range. Some uncertainty about the exact values of the friction factors and
friction coefficients is reported in [2], together a recommendation of the commonly used
values of m == 0.06 and It == 0.04.

Figures 4(a-e) show the comparison between the experimental results of [2], for pure
drawing, and the theoretical predictions of the present study. Note that the average
drawing stress (52) and (53) can be written in the fonn t == (1 +CS>4Y. where, in view of
(65), the average yield stress of the composite Y. is a function of the total homogeneous
strain £0. Thus, Y. increases with £0 according to the relative proportions of the two layers.
The theoretical curves in Figs. 4 were calculated with the correction factor (41) and with
the recommended values of mo == m2 == 0.06 for the friction factors. However, almost
identical results (not shown in Figs. 4) were obtained from relation (55) for the correction
factor with Po == Il2 == 0.04 (which corresponds to q == 0.61).

The agreement between theory and experiment, as displayed in Figs. 4, appears to
support the validity of the present analysis. The deviations at low values of4 are expected
since the die cannot be regarded, in that range, as long and tapered. The geometrical
restriction on the dimensions of the die (ex,. - «0 < 1- l/po) gives approximately 4 < 0.16,
which indeed bounds the domain of agreement, between theory and experiment, in Figs.
4.
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Fig. 4. Comparison of experimental results for the drawing tension I of bimetallic composite tubes
with theoretical predictions. The theoretical curves were calculated on the basis of friction factor
conditions with m -= 0.06. In all cases IXo -= 0, IX, -= 0.131 rad. Theoretical results are expected to be

valid for Yl < 0.16.

5. SHIELD'S SOLUTION

Axially-symmetric radial flow is conveniently formulated in a spherical-polar system
(r, e, cp) with the origin at the virtual apex O. Material incompressibility implies here a
radial velocity of the form (p-nondimensionalized radial coordinate, f(9)-unknown
function)

f«())
V,= --2 .

P
(66)

The components of the Eulerian strain rate follow as

D - D _ _ f«(J)
6- ,,- 3 '

P
(67)
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For a rigid/perfectly-plastic material we have the constitutive relations

The first of (68) is identicaIly satisfied with the parametric representation

(1, - (10 = Y cos 2"', frB = ~ sin 2'"

which can be combined with the second of (68) to give

J3f'«()
6f«() = -tan 2"'.

661

(68)

(69)

(70)

Inserting now (69) in the radial equation of equilibrium and integrating over the
streamlines, we find that[9]

(1, = - ~ [2("" + J3) cos 2'" + cot () sin 2"'] In p +~ F(O) (71)

where F(O) is unknown. It can now be shown[9] that transverse equilibrium is satisfied
if

[2("" + J3) cos 2'" + cot 0 sin 2"']' =0

(F - J3 cos 2"')' + 3 sin 2'" =O.

(72)

(73)

Equations (72) and (73) were first derived and solved numerically by Shield [9]. Since they
do not admit an exact solution, the approximation procedure will be performed directly
on the differential equations.

The local shear factor follows from the second of (69) as

(74)

Also, as observed already in [5], the vorticity measure (16) coincides with the local shear
factor (74). It foIlows that, as in the plane-strain problem, we may regard I'"I as much
smaller than unity in nearly uniform radial flow patterns. With this assumption it is
permissible to approximate (72) by the equation

J3B
("" +J3)+'" cot 0=y (75)

where B is an integration constant. The solution of (75) is conveniently written in the form

(76)

where K is the second integration constant. It is worth mentioning that (76) is also the exact
solution[4, S] for axially-symmetric radial flow of rigid/linear-hardening materials. For
small die angles we can replace solution (76) by the relation

l:-", =(~ -I)O-~.j3 Y YO'
(77)
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The corresponding solution of (73), when approximated along similar lines, is simply

where A is an integration constant.
The stress field follows now as

(78)

(J, = Y + A - 2B In p

(J8 = A - 2B In p

(79)

(80)

(81)

Expressions (79)-(81) may ~compared with the analogous results (IlK13) for the
plane-strain problem.

The velocity profile associated with that stress field follows from the solution of (70),
with the approximation tan 2t/J ~ 2t/J, and use of (77). The result reads

f(6) = U6[(6KJ!YJ exp [ - 3(~- I) 62J (82)

where U is a constant. For sufficiently small () we can use a further simplification of (82).
Integrating (70) we find that for small t/J and ()

(83)

6. COMPOSITE TUBES AND WIRES

The basic notation for composite multilayered tu~ forming processes is shown in Fig.
5. Following the same ideas as in the plane-strain analysis, we assume thateqns (79)-{83)
describe the stress field within each layer. Thus

(84)

(85)

(86)

where i = 1, 2, ... , nand a j .. I ~ 6 ~ lX;. The associated radial velocity is obtained from (66)

p-----
t=.....----., -~'--

Fig. 5. Notation for composite multilayered tube drawing or extrusion. The tube enters the
working zone at P = Po and leaves the die, with reduced dimensions, at p = 1. The composite
consists of n layers (i = 1,2, ... , n) and all streatnlines are directed towards the same virtual apex

O.



Drawing and extrusion of composite sheets, wires and tubes

and (83) as

V (I) Vi. I 2, = -"2 I = , , ... ,n.
P

Normal stress continuity at the interfaces is satisfied if

Ai=A and Bi=B i=I,2, ... ,n.
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(87)

(88)

The requirement for continuity of shear stresses along the interfaces leads here to the
(n - I) equations

(89)

Turning to the friction conditions imposed at the walls, we have either the friction
factor version (m = mo at 8 =1%0, m = mn at (J =a,,)

at 0 = 1%0

(B- Y")a,,2-K,, = )m"y"
or the Coulomb friction coefficient version

f.Po t~)p dp = Jlo flPo
(T,P dp

f.po
t~)p dp = - f,l" JPo (ToP dp at 8 =a".

(90)

(91)

(92)

(93)

Substituting the stresses (85) and (86) in conditions (92) and (93) gives the equations

(B - YI)al- XI = rtoJlo(A - JB)

(B- Y,,)an
2 -Xn= -a"f,ln(A -JB)

where

The loading condition is again expressed by relation (34) with

1 1«"t = 2 2 (T,(p = 1)8 dO = Y"" + A
a" -1%0 '"0

(94)

(95)

(96)

(97)

p= (98)

as the proper expressions for the driving stresses. The average yield stress of the composite
is here defined by

(99)

Inserting (97) and (98) in (34) we obtain the axially-symmetric loading condition in the



664

form
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A - (1 + '1 )(1n Po)B + Yat, =O. (100)

The solution of equations (89), (100) and (90) and (91), or (94) and (95), is
straightforward and follows the procedure employed in the plane-strain analysis. Summing
eqns (89) from i = 1 to i = II - 1 gives

Combining (1 (0) and (10 I) with (90) and (91), or (94) and (95), we find that

A = [( I + c5)(1 + t1 ) In Po - 1] Y"", B = (I + c5) Ylit·

where

c5 _ lXo/?Io Y, + cx.m. Y.
- J3(cx/ - exo2

) YQV

for the friction factor conditions (90) and (91), and

c5 = (exoJ-lo + cx,Jl.H1- (1 + '1 ) In Po + J]
(cx.2 - exo2

) + (exoJ-lo + cx.Il.H(l +,,) In Po - J]

CXoCX.(CXoIl. + cx.IJoHI - (l + ,,) In Po + J]
y=

(cx.2 - exo2
) + (CXoJ.lo + cx.Il.)[(1 + t1 (In Po - J]

with the Coulomb friction coefficient conditions (94) and (95).
Summing eqns (89) from j = 1 to j = i-I, and using the first of (103), gives

where

is the average yield stress of the first i layers.
The stress field (84}-(86) can now be written explicitly in the form

GB= - Y",,+(1 +c5)Y",,[(1 +t1)lnpo- 21np]

[

2 ] 2 _ 2 (cx2 )
t ~ = (1 + c5)O - ceo : y Y"" - cx, 0 ceo Y~ + t -0 Yj •

(101 )

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111 )

(112)

Formally, it remains to find constants Vj which determine the radial velocity profile
(87). The velocity continuity conditions at the interfaces imply here the relations

Vj + I = Vj j = 1, 2, ... ,n - 1

by which all Vj can be expressed by a single unknown constant V.

(113)
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The driving stresses (97) and (98) may here be cast into the relations
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(114)

where

(115)

are the corresponding uniform driving stresses, and

£o=2Inpo (116)

is the total homogeneous strain in axially-symmetric radial flow.
For the case of composite wires, where ao =0 and mo =AI =0, we have the simplified

relations

and

y =o. X; =aN Y~ - Y/) i = I, 2, ... , n

lJ _ m. Y. fJ = p.l I - (I +") In Po + J]
- j3a.Y..: a.+p.[(1 +,,)Inpo-J]

(117)

(118)

(119)

for the proper expressions of the correction factors. Note that since XI =0 the shear stress
(86) varies linearly within the core layer.

7. CONCLUDING REMARKS

In the last section we present a brief discussion of the axially-symmetric solution, by
way of comparison with the analogous plane-strain results.

Let us begin with the forming processes of a composite tube that consists of a hard
core coated with two soft thin layers. Taking mo =ml =m, YI = Y. = Y.,.,.\, Y... = Ycore and
2(a.. - ao) =11. for the effective axially-symmetric die angle, we find from (104) that

fJ = ~(~)(~:)
which differs by a factor of 2/./3 from (54). Expression (119) holds also for a coated wire,
with 211.. =11., as can be seen from the first of (118).

The relative weight of the shear factors along the walls, for the same Y; (i = I, n) Y""
and 11., is obtained by comparing (104) with (41). It turns out that

11.; (4) .(m;)plaac-oIrain =-- Mm; , =0, n
ao + CI. v 3 uially-lJl'lllllClril:

(120)

which demonstrates why the axially-symmetric tube forming analysis is not valid when
ao = 0; the area of the inner wall vanishes and mo becomes meaningless.

A similar relation holds for the Coulomb friction coefficients Pt. In comparing (106)
with (43) we note that Po in the plane-strain formula is replaced by Po2 in the axially
symmetric solution. This follows also from a comparison of (96) with (32). With that
transformation in mind we find that (106) becomes identical with (43) provided that

~ + 11.Jl.
q = 2 2

11.. - ao (121)

replaces, in the axially-symmetric case, the plane-strain definition (55). The two expressions
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for q become identical (for the same die angle) if

)
IX,

(J.li p1ane·strain =-+- (2J.l,)uialJy.symmetric
txo IXn

i = 0, n (122)

again showing the invalidity of the tube fonning solutions for txo = O.
A noteworthy point here is that the expressions for q, given by (55) and (121), admit

the common structure

(123)

where the average Coulomb friction coefficient J.l"" is defined by J.l"" =~ + J.ln) in
plane-strain, and by J.l"" =(aolJo + (X,Jln)/(ao + (Xn) in the axially-symmetric case. Note again
that the respective die angles are (X = (Xn - txo and a = 2(an- txo).

Expressions (43) and (106) can therefore be written in the common fonnula

where

0= q(l- J*)
I +qJ*

* (I + '7 po)J = I + ----- Inpo
2 Po - I

(124)

(125)

in plane-strain, and Po is replaced by P02 in the axially-symmetric flow. Relations (124) and
(125) hold also for composite wire fonning processes with J.lav = J.ln and a = 2an.

The similarity between the two-dimensional and three-dimensional radial flow patterns
implies an almost direct correspondence between the properties of the respective solutions.
The basic conclusions drawn in Section 4 are therefore valid for the axially-symmetric
fonning processes as well. In restriction (62), for example, we simply replace £0 by definition
(116). Similarly, constraints (63) are here replaced by

where To(') are the allowable shear stresses at the interfaces.
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